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ABSTRACT

The skill of two statistical downscaled seasonal temperature and precipitation forecasts from the North

American Multimodel Ensemble (NMME) was evaluated across the western United States at spatial scales

relevant to local decision-making. Both statistical downscaling approaches, spatial disaggregation (SD) and

bias correction spatial disaggregation (BCSD), exhibited similar correlative skill measures; however, the

BCSDmethod showed superior tercile-based skill measures since it corrects for variance deflation in NMME

ensemble averages. Geographic and seasonal variations in downscaled forecast skill revealed patterns across

the complex topography of the western United States not evident using coarse-scale skill assessments,

particularly in regions subject to inversions and variability in orographic precipitation ratios. Similarly, dif-

ferences in the skill of cool-season temperature and precipitation forecasts issued when the fall El Niño–
Southern Oscillation (ENSO) signal was strong versus ENSO-neutral years were evident across topographic

gradients in the northwestern United States.

1. Introduction

Seasonal climate forecasts have the potential to help

mitigate detrimental climate impacts and capitalize on

beneficial climate impacts to society and the environ-

ment (e.g., Steinemann 2006; Fraisse et al. 2006). Just as

skillful forecasts can be used to mitigate losses associ-

ated with climate variability (Troccoli 2010), the misuse

of unskillful forecasts can be costly and hinder our

subsequent ability to use forecasts (Hartmann et al.

2002). The use of seasonal forecasts is currently limited

by not only forecast quality, but also the spatial mis-

match between model output and user needs, which

results in a lack of knowledge of how skillful these

forecasts are at local scales (e.g., Doblas-Reyes

et al. 2013).

Seasonal climate predictability is imparted by slower-

evolving components of the climate system including sea

surface temperature, snow, and soilmoisture (Koster et al.

2010; Slingo and Palmer 2011). Seasonal climate forecasts

include both empirical and dynamic approaches, and as-

sociated derivatives thereof, combined with expert judg-

ment. Whereas empirical forecasts rely on observed

relationships, dynamical models utilize either general

circulation models (GCMs) or high-resolution regional

models (Doblas-Reyes et al. 2013). The accuracy of sea-

sonal climate forecasts varies across multiple dimensions

including the modeling approach, variable of interest, re-

gion, season, and forecast lead time (e.g., Tian et al. 2014;

Ma et al. 2016). Seasonal forecast skill is typically higher in

the tropics (e.g., Graham et al. 2000; Goddard andMason

2002; Lavers et al. 2009), typically higher for temperature

than precipitation (e.g., Lavers et al. 2009), and typically

attenuates with longer lead times. Forecast skill may also

be contingent on large-scale modes of climate variability

(Scaife et al. 2014). For example, improved seasonal

forecast skill during ENSO years (Frías et al. 2010; Kim

et al. 2012; Manzanas et al. 2014) may provide windows of

opportunity for forecast users (Troccoli 2010).
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Whereas the assessment of seasonal climate forecasts

at coarse resolution provides valuable information on

the climate predictability at macroscales, such in-

formation may be obscured at spatial scales where this

information is used for decision-making (Rayner et al.

2005) and for applications that need more refined in-

formation (e.g., Wood and Lettenmaier 2006). Hetero-

geneous skill across the westernUnited States was found

in previous assessments of seasonal climate forecasts at

their native resolution (e.g., Peng et al. 2012; Roundy

et al. 2015). In addition, the confluence of topography

and large-scale climate can result in subregional varia-

tions in climate across parts of the westernUnited States

(e.g., Abatzoglou et al. 2009) that may alter model skill

and the usability of forecasts. In this study, we evaluate

the skill of statistically downscaled seasonal climate

forecasts across the western United States given the

potential utility of such forecasts for water resources and

wildfire management (e.g., Hartmann et al. 2002). Recent

studies have demonstrated the utility of statistical down-

scaling over raw GCM output for reproducing monthly

climatic statistics and extremes for both climate scenarios

(Ning et al. 2012; Ahmed et al. 2013; Ning et al. 2015) and

seasonal climate forecasting (Yoon et al. 2012).

To address this gap, we assess in this study the skill of

North American Multimodel Ensemble (NMME) sea-

sonal forecasts of temperature and precipitation statis-

tically downscaled to 4-km (1/248) across the western

United States from 1982 to 2010. Two simple statistical

downscaling methods (e.g., Fowler et al. 2007) were

compared: 1) spatial disaggregation (SD), which in-

terpolates model anomalies to observed climatologies,

and 2) bias correction spatial disaggregation (BCSD),

which quantile maps model anomalies to observations

and then interpolates these data to observed climatol-

ogies. A suite of models participating in NMME and two

downscaling approaches are used to address three pri-

mary research questions: 1) How does forecast skill

compare between the two simple statistical downscaling

approaches? 2) What added value do downscaled fore-

casts provide over coarser-resolution forecasts across

the complex terrain of the western United States?

3) How does ENSO phase alter the skill of seasonal

forecasts?

2. Data and methods

a. Data

Retrospective forecasts (hindcasts) on a 18 grid were

acquired from six models participating in the NMME

system (Table 1). Model hindcast runs were initialized

over the first several days each month. Rather than

considering each ensemble member, we use the en-

semble average of the 10–24 deterministic hindcasts for

each model over the 29-yr period (1982–2010). We ex-

amined monthly temperature and precipitation across

the westernUnited States (west of 1038W) for lead times

from 1 to 6 months. In addition to individual ensemble

means for each model, we computed the multimodel

mean (denoted MM) as a simple average of ensemble

means from individual models. Although the use of an

ensemble averaging breaks down the consistency of

physical processes in each model, this approach has

proven to, on average, produce better skill than any

single model (e.g., Kirtman et al. 2014). Notice that the

MM is the mean of all downscaled models (i.e., we first

downscaled the models and then computed the MM).

Historical observations of monthly mean temperature

and precipitation on a 1/248-resolution (;4 km) grid were

acquired from the surface meteorological dataset of

Abatzoglou (2013) for 1979–2010. This dataset was also

aggregated to 18 resolution in order to evaluate the skill

of NMME hindcasts at their native resolution (see the

online supplement to this article) in order to compare

the differences that arise at local scales as a result of the

downscaling.

TABLE 1. Seasonal hindcast models from the NMME project used in this study. The MM was taken to be the average hindcast from the

six-model ensemble average outputs listed in the table.

Model No. of ensemble runs Organization Reference

CMC1 10 Canadian Meteorological Centre (CMC) Merryfield et al. (2013)

CMC2 10 CMC Merryfield et al. (2013)

CFSv2 24 National Oceanic and Atmospheric

Administration/National Centers for

Environmental Prediction (NOAA/NCEP)

Saha et al. (2014)

GFDL 10 Geophysical Fluid Dynamics Laboratory (GFDL) Zhang et al. (2007)

GFDL- Forecast

Version Low Ocean

Resolution (GFDL-FLOR)

10 GFDL Jia et al. (2015)

NASA 10 National Aeronautics and Space Administration

(NASA)

Molod et al. (2012)
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b. Methods

Two statistical downscaling methods were used to

bridge the scale between the output of NMME models

and the 4-km resolution of the observations: SD and

BCSD. We focus here on these statistical downscaling

approaches as they are widely used and relatively simple

to apply (e.g., Ning et al. 2012; Abatzoglou and Brown

2012; Ahmed et al. 2013). Both methods use monthly

hindcast anomalies, which are computed relative to the

model climatology (1982–2010). The SD method, analo-

gous to the delta approach (e.g., Fowler et al. 2007), in-

terpolates these anomalies to the 4-km grid, whereas the

BCSD method first bias corrects the anomalies using

empirical quantile mapping (e.g., Wood et al. 2002)

thereby adjusting these data to the statistical distribution

of the coarse-resolution observed distribution (1982–

2010) before interpolating the output to the 4-km grid.

As a final step for both methods, anomalies are converted

to raw values using monthly climatology from observa-

tions. Note that resultant time series of SD and BCSD are

highly correlated to the raw model outputs on monthly

time scales, but may differ when aggregated over multi-

ple months because of differences in the background

climatology.

For each model we considered a three-dimension

hindcast matrix for monthly temperature and pre-

cipitation that considers 1) each calendar month of the

year, 2) lead times of 1–6 months, and 3) data aggregated

over a period from one to six consecutive months con-

tingent on lead time. For example, a seasonal hindcast

made inOctober includes hindcasts for individualmonths

from October to March and all possible combinations of

consecutive months. A 2-month lead time is herein re-

ferred to as a hindcast of conditions for next monthmade

from initial conditions at the beginning of the present

month. A hindcast made at the beginning of March and

covering the months of March–May can be evaluated for

each month separately or in the aggregate. Climate

anomalies may be more predictable on seasonal rather

than monthly time scales (e.g., Luo et al. 2007) as tem-

poral averaging can increase the signal-to-noise ratio

(Fricker et al. 2013; Roundy et al. 2015). A comprehen-

sive evaluation of hindcast skill over various temporal

permutations is needed to cover the range of seasonal

applications among decision-makers (e.g., Steinemann

2006). Wildland fire managers, for instance, begin to

prioritize suppression resource allocations in the spring

and are interested in seasonal forecasts issued in March–

May (Corringham et al. 2008).

Hindcast verification is a complex and multidimen-

sional problem lacking a universal approach (e.g.,

Willmott et al. 2012). To cover a wide range of potential

applications, the quality (or relative accuracy) of seasonal

hindcasts was evaluated through deterministic (correla-

tion) and categorical [Heidke skill score (HSS)] means.

Correlations were computed at each grid point separately

for each time period (e.g., March, March–May) and lead

time (e.g., 1 or 2 months). Since correlation represents a

widely used summary measure of association between

hindcasts and observations but yet fails to evaluate the

magnitude of the errors (Barnston 1992), we use HSS to

assess the categorical forecast skill for terciles (usually

referred to as below, near, and above normal or three

class) given their widespread use in operational seasonal

outlooks (e.g., Peng et al. 2012). The HSS (expressed

as a percentage) indicates the hindcast accuracy for

each tercile relative to that expected by chance and is

defined as

HSS5
(c2 e)3 100

(t2 e)
,

where c is the number of cases (i.e., years) with correct

forecasts (i.e., the hindcast falls within the same tercile

as the observation), t is the total number of years (i.e., 29

in our period) in the outlook, and e is number of years

expected to be correct by chance (i.e., t/3 for tercile-

based categorization). TheHSS ranges from250 (for no

hits) to 100 (all hits), where HSS 5 0 is the expected

value for a completely random hindcast. HSS was eval-

uated collectively for all categories, as well as separately

for below-normal and above-normal conditions sepa-

rately given the potentially greater value in utilization of

seasonal hindcasts when the signal is particularly pro-

found (e.g., Thomson et al. 2006). To assess the signifi-

cance of HSS skill measures, we performed a

bootstrapping test by generating 1000 samples of ran-

dom hindcasts with replacement for N 5 29 yr and de-

fined the level of significance with the HSS value

corresponding to the 95th percentile of the resulting

1000 HSS values. HSS and correlative skill values ob-

served to fall below the 95% confidence level were

masked out. We report the percentage of the western

United States with statistically significant skill (HSS or

correlation) at the 95% confidence level.

An additional analysis was conducted to assess the

conditional hindcast skill based on the ENSO phase.

MonthlyNiño-3.4 SSTs from 1982 to 2010were obtained

from the NOAA/Climate Prediction Center (available

online at http://www.cpc.ncep.noaa.gov/data/indices/).

We evaluated the skill of hindcasts initialized inOctober

contingent on ENSO phase given its strong tele-

connections to the western United States climate in

winter (e.g., Redmond and Koch 1991). We qualified

ENSO years (either an El Niño or a La Niña event)
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when the mean August–October Niño-3.4 value was

exceeded by one standard deviation. This resulted in a

total of four El Niño winters (1982/83, 1987/88, 1997/98,

and 2002/03) and four La Niña winters (1988/89, 1998/99,
1999/2000, and 2007/08). We compare the skill of the

hindcasts initialized during years with a strong ENSO

signal (El Niño or La Niña) versus a weak ENSO signal.

3. Results and discussion

a. Comparison of downscaling approaches

Figure 1 shows the percent of grid cells across the

western United States with statistically significant cor-

relations and HSS scores as a function of lead time and

number of cumulative months for the MM hindcast. We

illustrate these statistics averaged for all months of the

year. Similar results were obtained using individual

models from the NMME. Correlative skill measures

were comparable between the two downscaling

methods. Seasonal hindcasts of temperature showed

significant correlative skill for more than 80% of the

domain along the diagonal (e.g., 3-month hindcast ag-

gregated for the next 3 months, 6-month hindcast ag-

gregated for the next 6 months) (Figs. 1a,b). Hindcast

skill decreased with lead time given the decaying influ-

ence of the initial conditions (e.g., Lavers et al. 2009);

however, significant model skill was present for longer

lead times that considered multiple months (e.g.,

3-month hindcast ending with a lead time of 5 months).

Seasonal precipitation hindcasts were less skillful than

those for temperature (Figs. 1g,h). The maximum extent

of the correlative skill (55%) was found for 1-month

lead-time hindcasts, but approximately 30% of the do-

main had skill for 3-month hindcasts ending with a lead

time of 5 months. Similar patterns were found for HSS;

however, the BCSD approach showed significant skill

FIG. 1. Percent of grid points of the western United States with statistically significant skill for both (a)–(f) air temperature and (g)–(l)

precipitation as a function of lead times (x axis) and the number of cumulative months over which hindcasts and observations are

aggregated (y axis). The significance of HSS was assessed from a bootstrapping test by generating 1000 samples of random hindcasts with

replacement (N 5 29 yr). The HSS values corresponding to a confidence level of 95% for all categories were used to define the level of

significance. Skill scores were computed from the MM ensemble for each month separately and then averaged across the year. The first

column indicates scores from the SDmethod, the second column indicates scores from the BCSDmethod, while the third column gives the

difference between BCSD and SD. Time periods for which no hindcasts were made above the diagonal are shown in gray.
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over a much larger spatial extent of the domain than SD

(Figs. 1f,l). As significant autocorrelations of monthly

anomalies are often observed because of the persistence

of the low-frequency mode of variability such as ENSO,

the skill of the MM hindcast was also compared with the

skill of the persistence hindcasts based on the observed

climate from the month preceding the forecast. While

the MM shows significant skill over more than 80% of

the domain along the diagonal, persistence forecasts

display significant skill over less than 30% of the do-

main, with a strong decline in the skill beyond 1-month

lead time (not shown). This suggests that the MM is

skillful relative to persistence forecasts.

The higher skill obtained using BCSD downscaling

for categorical hindcasts is a consequence of quantile

mapping the model output to the distribution of aggre-

gated (18 resolution) observations. The use of ensemble

means for individual models and the MM results in a

deflation of variance. As the SD method strictly uses

anomalies from these models, it will underestimate the

variance and potentially have less utility for a place-

based hindcast for tercile-based skill measures. A compar-

ison of SD and BCSD hindcasts for a December–February

forecast made in earlyDecember in southeastern Idaho

is shown in Fig. 2. While both hindcasts had similar

correlations with observations, SD tends to produce

hindcasts close to the observed climatology (Fig. 2a)

while BCSD, by correcting for the variance defla-

tion, increases the proportion of categorical matches

(Fig. 2b).

Tables 2 and 3 summarize the overall mean annual

skill scores of hindcasts for each downscaling method

and model. Although CFSv2 uses a larger number of

runs relative to other models (which may lead to a

stronger variance deflation), differences in hindcast skill

between CFSv2 and other models were not evident. The

BCSD method substantially outperforms the SD

method for all HSS metrics, while comparable skill is

seen between SD and BCSD for correlative metrics,

although the skill of SD tends to slightly exceed that of

BCSD for temperature. Additionally, the HSS skill is

notably higher for upper- and lower-tercile hindcasts

than for hindcasts including all categories, consistent

with previous studies that have shown forecast skill for

‘‘normal’’ conditions to be limited (e.g., Van den Dool

and Toth 1991). Hindcast skill varies across models, with

CFSv2 and NASA generally outperforming the other

models. However, the MM demonstrated skill exceed-

ing any single model’s skill, confirming the results of

many other studies that are a consequence of combining

complementary predictive skills in multimodel ensem-

bles (e.g., Kirtman et al. 2014). Hereafter, we constrain

our results to MM output downscaled using the BCSD

approach for conciseness.

b. Geographic and seasonal variability in hindcast
skill

Figure 3 shows the geographical distribution of the

seasonal correlation and HSS scores between observed

temperature and 3-month seasonal hindcasts initialized

at the beginning of each season. While the spatial dis-

tribution of the correlation and HSS skill in winter is

highest across the northwest United States, in agree-

ment with previous findings (e.g., Arribas et al. 2011;

Becker et al. 2014), our results indicate that the MM is

most skillful in northwest Washington, the Idaho pan-

handle, and parts of eastern Oregon and western Idaho,

while the skill tends to weaken across the lower

FIG. 2. Illustration of the impact of the variance reinflation

after BCSD on the HSS for December–February precipitation

hindcasts issued in early December in southeastern Idaho

(42.238N, 111.158W). (a) Time series of observed precipitation

(black) and the hindcasts from the MM after SD (blue) and BCSD

(red). Dashed lines indicate tercile boundaries. (b) Scatterplot of

observations against hindcasts. Red (blue) filled circles indicate

correct hindcasts (i.e., hindcast falls within the observed tercile)

from the MM after BCSD (SD). The overall HSS obtained for all

categories from both BCSD and SD is also indicated.
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elevations of the Columbia Plateau inWashington State.

Similar results were found for cold and warm terciles, al-

beit with noisier patterns. In spring, high-skill areas are

found in the Northwest and for Arizona andNewMexico,

while the lack of skill evident during the winter persists in

California, Nevada, andUtah, in agreement with previous

findings based on coarse-resolution NMME models (e.g.,

Becker et al. 2014). Higher skill in spring temperature is

also found in the Snake River valley across southern

Idaho relative to the surrounding mountainous areas.

Widespread skill in summer temperature hindcasts is ev-

ident across the western United States, with the primary

exception seen in coastal California and parts of the Sac-

ramento valley (Shukla et al. 2015). This substantial de-

crease in the skill in the region is likely due to the strong

influence of the maritime airflow from the ocean, while

the topographic barrier south and north of the Sacra-

mento delta prevents the flow of maritime air inland

(Abatzoglou et al. 2009). The lowest forecast skill was

found for fall, as seen in previous efforts (e.g., Roundy

et al. 2015). However, some skill persists across New

Mexico, Arizona, and Colorado. More details about the

seasonal dependency of the coarse-resolution skill across

the United States can be found in Peng et al. (2012).

Seasonal hindcasts of precipitation show regional skill

(Fig. 4), although typically less than that for temperature.

The greatest skill in the winter is found across southern

Arizona and New Mexico, much of Idaho, the northern

Great Basin, and much of California, with more pro-

nounced spatial gradients in skill than in coarse-scale

studies (e.g., Peng et al. 2012). There is also correlative

skill in the Cascades of Oregon and central Washington

State, despite a notable absence in adjacent low-lying

areas, potentially tied either to fluctuations in oro-

graphic precipitation enhancement (e.g., Dettinger et al.

2004; Luce et al. 2013) or inadequacies in how GCMs

simulate moisture transport pathways that affect the

low-lying regions (Mo and Lettenmaier 2014). There is a

clear asymmetry for dry and wet terciles, with large

geographic regions of skill for wet terciles including

parts of the Rocky Mountains and the Sierra Nevada

during winter while no skill is found for dry conditions in

these regions. High correlative skill for spring pre-

cipitation is found across much of the southwestern

United States. Hindcast skill is notably absent across the

Southwest in summer across a region generally affected

by the North American monsoon (Higgins et al. 1998),

whereas widespread skill is evident across the northern

half of the western United States, as seen in Roundy

et al. (2015). Summer precipitation hindcasts initialized

in early June may therefore be useful for fire manage-

ment planning across parts of the northern and middle

TABLE 2. Overall mean of temperature hindcast skill for the NMMEmodels averaged over the western United States for different lead

times (3/3 5 lead time/cumulative month) and different metrics (ALL 5 all categories, WARM 5 above normal, COLD 5 below

normal). The highest skill scores across both models and downscaling methods are set in boldface.

SD/BCSD

CFSv2 CMC1 CMC2 GFDL GFDL-FLOR NASA MM

r3/3 0.45/0.46 0.46/0.44 0.44/0.42 0.47/0.45 0.27/0.27 0.48/0.47 0.52/0.48
r6/6 0.45/0.44 0.37/0.36 0.40/0.38 0.41/0.40 0.38/0.34 0.48/0.47 0.49/0.47

HSS2ALL3/3 11/17 12/14 12/12 12/17 2/7 12/17 12/17

HSS2ALL6/6 12/15 9/12 12/12 12/12 7/12 12/17 12/17

HSS2WARM3/3 23/30 26/28 27/26 26/28 13/18 28/30 26/30
HSS2WARM6/6 22/26 21/24 25/27 22/26 19/28 28/32 22/36

HSS2COLD3/3 29/33 24/29 29/32 27/28 20/18 29/33 31/34

HSS2COLD6/6 31/30 26/29 31/32 30/31 25/25 29/36 32/35

TABLE 3. As in Table 2, but for precipitation.

SD/BCSD

CFSv2 CMC1 CMC2 GFDL GFDL-FLOR NASA MM

r3/3 0.30/0.30 0.29/0.26 0.34/0.32 0.29/0.29 0.19/0.21 0.35/0.33 0.38/0.37

r6/6 0.30/0.29 0.29/0.27 0.32/0.32 0.27/0.28 0.23/0.22 0.34/0.31 0.37/0.36

HSS2ALL3/3 1–7 7/12 9/17 7/12 2/7 9/17 7/17

HSS2ALL6/6 21/7 2/12 12/17 7/12 2/12 7/12 7/17
HSS2WET3/3 16/19 14/16 18/21 16/19 10/13 20/23 17/25

HSS2WET6/6 14/22 13/18 19/21 17/21 13/18 20/22 14/28

HSS2DRY3/3 3/18 5/17 12/18 13/18 4/13 12/21 0/23

HSS2DRY6/6 0/18 5/18 14/24 12/20 4/17 10/19 0/28
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FIG. 3. Spatial distribution of seasonal skill scores for air temperature computed from the MM ensemble with 1-, 2-, and 3-month lead

times (e.g., the first column shows the skill of the hindcasts made in early December for the December–February period) using the (first

row) coefficient correlation, (second row) HSS for all categories (including below, normal, and above normal), and HSS for only (third

row) cold and (fourth row) warm conditions. Nonsignificant values at the 95% confidence level were masked out.
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Rocky Mountains and Cascades, where summer pre-

cipitation is well correlated with burned area (e.g.,

Littell et al. 2009; Abatzoglou and Kolden 2013). The

ability of theMM to accurately predict wet conditions in

this area may be related to the impact of the warm phase

of ENSO during summer that brings an excess of

moisture across the interior Northwest (Barbero et al.

2015). Hindcast skill during fall is notably weaker out-

side of the region across western Colorado and New

Mexico. As the patterns for correlative scores and HSS

FIG. 4. As in Fig. 3, but for precipitation, where the HSS for only (third row) dry and (fourth row) wet conditions is shown.
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FIG. 5. Elevation (in m) in (a) WA–OR and (b) CA–NV. Difference in correlative scores from the MM ensemble

between BCSD hindcasts at 4 km and BC hindcasts at the native resolution of NMME outputs (18) for December–

February (c) precipitation inWA–ORand (d) temperature inCA–NVhindcasts issued in earlyDecember. Blue (red)

indicates regions where the downscaled hindcasts improved (degraded) the correlative skill relative to the coarse-

resolution skill. Notice that differences in correlative scores between fine- and coarse-scale hindcasts are shown only

where both datasets overlap in space, which is not the case, for instance, along the U.S.–Mexico border.
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were in general agreement, we hereafter constrain our

analysis to correlative scores.

The correlative scores of downscaled hindcasts

showed distinct differences from those obtained using

coarse resolution that highlight the role of complex to-

pography and affect the usability of seasonal climate

forecasts for local decision-making. The skill of down-

scaled estimates is generally lower than the coarse-

resolution skill due to the additional variability in

climate at finer spatial scales (e.g., Gangopadhyay et al.

2004). However, downscaled hindcasts showed higher

correlative skill than coarse-resolution hindcasts along

the windward slopes of the Cascade Range (Figs. 5a,c)

and in the northern Rockies (see Fig. S3 in the online

supplement to this paper). Conversely, reduced skill was

present in the lee of topographic barriers, where sea-

sonal precipitation totals occur in a reduced number of

precipitation events, and was more likely to be associ-

ated with individual synoptic systems (e.g., Abatzoglou

2016) rather than large-scale climate patterns (e.g., Wise

2010). Figures 5b and 5d provide a comparison of

downscaled versus coarse-resolution hindcast skill re-

sults for December–February temperature in California

and Nevada for forecasts made in early December.

Results show that downscaled hindcasts had higher skill

than coarse-scale hindcasts in the Central Valley of

California but showed less skill in the Sierra Nevada.

The spatial distribution of hindcast skill for air tem-

perature for 1-month (current month), 3-month (next

3 months), and 6-month (next 6 months) time spans is

shown in Fig. 6 for hindcasts initialized in January,

April, July, and October. Although the spatial extent of

the significant correlations globally generally decreases

with lead time, increased correlative skill is seen for

some regions. For example, a strengthening of the skill

between 1- and 3-month hindcasts is seen inArizona, the

Wasatch Mountains in Utah, and across parts of the

RockyMountains in Colorado for forecasts initialized in

FIG. 6. Spatial distribution of seasonal correlative scores for air temperature computed from theMM ensemble for (top) the current month,

(middle) the next 3 months, and (bottom) the next 6 months. Nonsignificant values at the 95% confidence level were masked out.
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October. Likewise, correlation skill for 6-month hindcasts

initialized in October is higher than 1-month hindcasts

across high-elevation areas including the Sawtooth Range

in central Idaho, and the Wind River Range in western

Wyoming. However, a sharp decrease in correlations can

be seen across the Snake River plain, the eastern slopes of

the northern Rockies, and the valleys in the Great Basin

relative to their surrounding locales during the wintertime.

These regions are particularly prone to winter radiation

inversions that decouple lower-elevation temperatures

from regional air temperatures.

The hindcast skill for precipitation exhibited vari-

ability across seasons, lead times, and geography

(Fig. 7). Overall, skillful precipitation hindcasts initial-

ized in January precipitation for 1-month lead time were

found across much of the southern half of the domain,

and in Arizona and Southern California for 3- and

6-month time spans where coarse-resolution precipitation

outlooks are generally skillful (Mo et al. 2012). Hind-

casts initialized in October suggest low predictability

across the western United States at short lead times

whereas 6-month hindcasts that could support water

management decisions showed skill over the Colorado

River basin.

c. ENSO-based conditional hindcast skill

A comparison of hindcast skill for October–March

temperatures for forecasts made in early October for

ENSO versus ENSO-neutral years shows common re-

gions of significant skill across the Desert Southwest and

the northwestern United States (Figs. 8a,b). For the

northwestern United States, an additional 20% of the

temperature variance was explained for forecasts issued

during active ENSO years (i.e., absolute value of

August–October Niño-3.4 exceeded one standard de-

viation) across portions of the lower elevations versus

during ENSO-neutral years.

Six-month precipitation hindcasts initialized in Octo-

ber for ENSO-neutral years showed high correlations

(r . 0.8) near the Four Corners region and moderate

FIG. 7. As in Fig. 6, but for precipitation.
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correlations (r. 0.4) across parts of interior Oregon and

the southern two-thirds of Idaho (Fig. 9a). Stark differ-

ences in regions of strong skill were found for ENSO

years (Fig. 9b) compared with ENSO-neutral years, in-

cluding across much of California, most notably in the

southwest portion of the state in agreement with pre-

vious efforts (Gershunov 1998; Peng et al. 2012; Roundy

et al. 2015). For the northwestern United States, an

additional 20% of the precipitation variance was ex-

plained for forecasts issued during active ENSO years

versus during ENSO-neutral years along the windward

side of the Cascade Range and northern Rockies,

likely a consequence of orographic precipitation con-

trols that arise in response to latitudinal variations in the

storm track (e.g., Mass et al. 2015). Likewise, this may

arise as a result of the limited predictability of cool

precipitation on the lee side of the Cascade Range. We

caution that the assessed skill for ENSO years is based

on a small sample size (N 5 8 yr) that may introduce

uncertainty (Kumar 2009); further analyses based on

longer records are needed to confirm these findings.

4. Conclusions

While previous efforts investigated the skill of sea-

sonal hindcasts over theUnited States using coarse-scale

GCMs, this analysis provides a useful guide to de-

termining the skill of statistically downscaled seasonal

temperature and precipitation forecasts over the west-

ern United States. We demonstrated the advantages of

implementing quantile mapping in BCSD versus SD in

categorical skill measures as a means to improving the

FIG. 8. Spatial distribution of correlations between mean air temperature conditions from October to March and the MM ensemble

hindcasts made in October during (a) non-ENSO years and (b) ENSO years.We consider ENSO years for the period 1982–2010 when the

August–October Niño-3.4 exceeded one standard deviation of its August–October values. Difference in the percentage of variance

explained between ENSO years and all years is indicated on the right for the Pacific Northwest. Note that correlations in (a) and (b) were

computed from different sample sizes. The critical values at the 95% confidence level are 0.44 and 0.71 in (a) and (b), respectively.

FIG. 9. As in Fig. 8, but for precipitation.
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variance deflation of ensemble means. While these re-

sults are not unexpected given the nature of ensemble

model output such as from NMME, they can be in-

formative for developing place-based seasonal climate

forecasts. While this work only considered simple statis-

tical downscaling approaches, more sophisticatedmethods

might be able to better capture climate features observed

in complex terrain such as inversions and orographic pre-

cipitation (Ning et al. 2012; Abatzoglou and Brown 2012;

Bürger et al. 2012, 2013).
Our results demonstrate differences in skill of downscaled

seasonal forecasts versus at their native resolution. These

differences were most pronounced in regions of complex

topography, where inversions and orographic processes can

result in substantial differences in monthly and seasonal

climate variability over short distances. Statistically down-

scaled seasonal climate forecasts result in place-based pre-

dictions that are not only more usable but that also better

elucidate finescale information about model credibility as

compared with forecasts issued at the native resolution of

the model. Finally, our results suggest that forecast skill is

contingent upon whether there is a significant ENSO signal

or not. This can be of value for water supply management

agencies that begin to project seasonal water supplies for

winter and spring in October (Hartmann et al. 2002).

Understanding the skill of these seasonal climate

forecasts across the multiple dimensions at actionable

scales can provide valuable information for decision-

making in water and natural resources, agriculture, and

infrastructure planning. The economic benefits of sea-

sonal forecasts may be substantial (Steinemann 2006),

but the utility of seasonal outlooks in the decision-

making process may be limited by the coarse-scale na-

ture of the available information. Downscaled seasonal

climate forecasts may help improve the utility of sea-

sonal hindcasts for consumers of such information.
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